Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization.

نویسندگان

  • Tanja Hamacher
  • Jessica Becker
  • Márk Gárdonyi
  • Bärbel Hahn-Hägerdal
  • Eckhard Boles
چکیده

For an economically feasible production of ethanol from plant biomass by microbial cells, the fermentation of xylose is important. As xylose uptake might be a limiting step for xylose fermentation by recombinant xylose-utilizing Saccharomyces cerevisiae cells a study of xylose uptake was performed. After deletion of all of the 18 hexose-transporter genes, the ability of the cells to take up and to grow on xylose was lost. Reintroduction of individual hexose-transporter genes in this strain revealed that at intermediate xylose concentrations the yeast high- and intermediate-affinity transporters Hxt4, Hxt5, Hxt7 and Gal2 are important xylose-transporting proteins. Several heterologous monosaccharide transporters from bacteria and plant cells did not confer sufficient uptake activity to restore growth on xylose. Overexpression of the xylose-transporting proteins in a xylose-utilizing PUA yeast strain did not result in faster growth on xylose under aerobic conditions nor did it enhance the xylose fermentation rate under anaerobic conditions. The results of this study suggest that xylose uptake does not determine the xylose flux under the conditions and in the yeast strains investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei

BACKGROUND Global climate change and fossil fuels limitations have boosted the demand for robust and efficient microbial factories for the manufacturing of bio-based products from renewable feedstocks. In this regard, efforts have been done to enhance the enzyme-secreting ability of lignocellulose-degrading fungi, aiming to improve protein yields while taking advantage of their ability to use l...

متن کامل

Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae

BACKGROUND Engineering of Saccharomyces cerevisiae for the simultaneous utilization of hexose and pentose sugars is vital for cost-efficient cellulosic bioethanol production. This yeast lacks specific pentose transporters and depends on endogenous hexose transporters for low affinity pentose uptake. Consequently, engineered xylose-fermenting yeast strains first utilize D-glucose before D-xylose...

متن کامل

Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters

BACKGROUND Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is not able to ferment pentose sugars. Although D-xylose and L-arabinose fermen...

متن کامل

Rewiring yeast sugar transporter preference through modifying a conserved protein motif.

Utilization of exogenous sugars found in lignocellulosic biomass hydrolysates, such as xylose, must be improved before yeast can serve as an efficient biofuel and biochemical production platform. In particular, the first step in this process, the molecular transport of xylose into the cell, can serve as a significant flux bottleneck and is highly inhibited by other sugars. Here we demonstrate t...

متن کامل

Influence of individual HXT transporters in xylose fermentation by recombinant Saccharomyces cerevisiae strains

Background Lignocellulosic biomass is an attractive raw material for bioethanol production since it is an abundant and renewable feedstock that does not compete with food and feed production [1]. Xylose is the most abundant pentose present on these feedstocks, and although S. cerevisiae cannot readily ferment this sugar, the overexpression of the genes for xylose reductase (XR) and xylitol dehi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 148 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2002